MATH 590: QUIZ 12 SOLUTIONS

Name:

Let $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$. Follow the steps below to find the JCF of A and the change of basis matrix P. Each part is worth 2 points.

(i) Find $p_A(x)$ and the single eigenvalue λ .

Solution.
$$p_A(x) = \begin{vmatrix} x-1 & -1 & 0 \\ -1 & x-1 & -1 \\ 0 & 1 & x-1 \end{vmatrix} = (x-1)^3.$$

(ii) Calculate E_{λ} .

Solution.
$$E_1 = \text{null space of} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \xrightarrow{\text{EROs}} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \text{ so } \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \text{ is a basis for } E_1.$$

(iii) Calculate $(A - \lambda I)^2$.

Solution.
$$(A-I)^2 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & -1 \end{pmatrix}$$
. The null space of $(A-I)^2$ is the null space of $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
Find v_0 not in the null space of $(A-\lambda I)^2$. Take $v_0 := (A-\lambda I)v_0$ and $v_1 := (A-\lambda I)v_0$.

(iv) Find v_3 not in the null space of $(A - \lambda I)^2$. Take $v_2 := (A - \lambda I)v_3$ and $v_1 := (A - \lambda I)v_2$. Solution. We can take

$$v_{3} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, v_{2} = \begin{pmatrix} 0 & 1 & 0\\1 & 0 & 1\\0 & -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, v_{1} = \begin{pmatrix} 0 & 1 & 0\\1 & 0 & 1\\0 & -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\-1 \end{pmatrix}$$

Thus $P = \begin{pmatrix} 1 & 0 & 1\\0 & 1 & 0\\-1 & 0 & 0 \end{pmatrix}$ and $P^{-1} = \begin{pmatrix} 0 & 0 & -1\\0 & 1 & 0\\1 & 0 & 1 \end{pmatrix}$.

(v) Letting P be the matrix whose v_1, v_2, v_3 , verify that $P^{-1}AP = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & \lambda & \lambda \end{pmatrix}$.

Solution.

$$P^{-1}AP = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$